


(1) We formulate the (master) NP-hard integer MCCF problem

previously adopted in NFV literature [13] but now with geo-

location and latency constraints as well as with probabilistic

capacity constraints for a reliable composition under uncer-

tainty of geo-distributed latency-sensitive SFCs. (Section III)

(2) We propose our first-of-its-kind metapath-based composite

variable approach that aggregates feasible mapping decisions

of each single-link SFC segment as a set of k-constrained

shortest metapaths. It then assigns SFC segments to their

associated metapaths either optimally by using generalized

assignment problem (GAP) [15] or suboptimally by using its

(polynomial) Lagrangian relaxation counterpart. (Section IV)

(3) Using trace-driven simulations of real US Tier-1 (∼300

nodes) and regional (∼600 nodes) infrastructure providers’

topologies, we first show how our SFC composition approach

achieves 99% optimality on average. In addition, we show that

it only takes time on the order of seconds for practically sized

problems in contrast with the master problem solution that

takes several hours. By recreating challenging disaster incident

scenarios as in [7], we lastly show how our approach can

compose twice as many sequentially incoming SFC requests

than the state-of-the-art solutions [16], [17]. (Section V)

II. RELATED WORK

SFC is traditionally used in NFV to place a set of mid-

dleboxes and chain relevant functions to steer traffic through

them [1]. Existing SFC solutions either separate the service

placement from the service chaining phase [9], [10], [11], or

jointly optimize both the two phases [8], [13].

SFC Optimality. In some special cases the optimal SFC

is shown to have approximation guarantees [9], [10], [11].

For instance, Cohen et al. [10] and Sang et al. [11] provide

near optimal approximation algorithms for the SFC problem

without chaining and ordering constraints. Tomassilli et al. [9]

propose the first SFC solution with the approximation guaran-

tees which admits ordering constraints, but still omits chaining

constraints. Guo et al. [18] show approximation guarantees

for SFCs with both ordering and chaining constraints, but

only under assumptions that available service chaining options

are of polynomial size. In the general case however, when

service functions need to be jointly placed and chained in a

geo-distributed cloud infrastructure with a corresponding com-

pute/network resource allocation, possible SFC compositions

are of exponential size. Thus, it becomes a linear topology

Virtual Network Embedding (VNE) [3], [19] and can be

formulated as the (NP-hard) MCCF problem with integrality

constraints with no known approximation guarantees [13].

Thus, Feng et al. [13] propose a heuristic algorithm whose

preliminary evaluation results in a small-scale network settings

(of ∼10 nodes) shows promise for providing efficient solutions

to the integer MCCF problem in practical settings.

In this paper, we propose the first to our knowledge practical

and near optimal SFC composition approach in the general

case of joint service function placement and chaining in a

geo-distributed cloud infrastructure that also admits end-to-

end network QoS constraints such as latency, packet loss, etc.

To this aim, we propose a novel metapath composite variable

approach which reduces a combinatorial complexity of the

(master) integer MCCF problem. As a result, our approach

achieves 99% optimality on average and takes seconds to com-

pose SFCs for practically sized problems of US Tier−1 (∼300

nodes) and regional (∼600 nodes) infrastructure providers’

topologies, where master problem solution takes hours using

a High Performance Computing cloud server.

SFC Reliability. With the advent of edge networking and

growing number of latency sensitive services, recent works

also consider problems of geo-distributed [20] and edge

SFC [5]. Although these works mainly focuses on the new

load balancing and latency optimization techniques, they omit

an important reliability aspect of geo-distributed latency-

sensitive SFCs. The closest works related to ours is [8]

and [17]. Fei et al. [8] propose a prediction-based approach

that proactively handles SFC demand fluctuations. However,

their approach does not account for network/infrastructure

outages that mainly cause service function failures [6]. At

the same time, Spinnewyn et al. [17] propose a SFC solution

that ensures a sufficient infrastructure reliability, but neither

proactively nor reactively handles SFC demand fluctuations.

In contrast to [8] and [17], our reliable composition scheme

uniquely ensures reliability of geo-distributed latency-sensitive

SFCs via use of chance-constraints and backup policies to cope

with both SFC demand fluctuations and infrastructure outages.

III. MODELING RELIABLE SERVICE CHAIN COMPOSITION

In this section, we define the problem of joint SFC compo-

sition that can be formulated as the integer MCCF problem for

an augmented cloud infrastructure graph [13] which is a gener-

alization of a well-known multi-commodity flow problem [19].

To proactively ensure reliability of a SFC composition, we

use backup policies as well as probabilistic ‘chance’ capacity

constraints instead of deterministic ones. Thus, we use a

chance-constrained programming [21]. We also extend this

problem with geo-location and latency constraints to satisfy

all QoS demands of geo-distributed latency-sensitive SFCs.

Objective and example of the online chain composition.

Based on providers’ policies, the service chain composition

problem can be used to minimize (expected) values of dif-

ferent fitness functions F
E

. One example of common fitness

functions is an additive function of service chain demands and

corresponding physical resource capacity ratios. Such function

is known to best balance the physical network load [19]. In

most cases service chain requests can be unknown in advance,

and using the load balancing fitness function allows to increase

the acceptance ratio of these requests. Such optimization is

also known as the ‘online optimization’ [16], [19].

Figure 2 shows an example of the online SFC composition

that minimizes the network load balancing function: by min-

imizing a sum of SFC demands and corresponding physical

resource capacity ratios, for a−b−c service chain we achieve

its minimum value F
E

= 8
10 + 2·1

5 + 8
10 + 1

5 + 4
5 = 3. As a

result, we compose this service chain request with X , Y and

A physical nodes (e.g., servers) to place a, b and c services,

respectively. To enable service communications a−b and b−c,
we chain them with X − B − Y and Y − B physical paths,

respectively. This also allows us to compose the subsequent

d− e request.





number of duplicates (Equation 2), service chaining or well-

known multi-commodity flow constraints (Equation 4). Addi-

tional policy constraints for service chain composition prob-

lem are also acceptable. One such example is a common

‘no consolidated service placement’ constraint that prohibits

placement of two or more different services (or their backups)

belonging to the same service chain onto one physical node

(Equation 8). Note that this policy further complicates a

combinatorial complexity of the (NP-hard) integer MCCF

problem. In contrast to prior SFC composition problems [13],

[17], we now use probabilistic physical node and link capacity

constraints to ensure that physical resources satisfy SFC QoS

demands given some acceptable risk (Equations 3 and 5).

The specific geo-distributed latency-sensitive SFC con-

straints include physical node geo-location and service com-

munication end-to-end network QoS constraints such as la-

tency, packet loss, etc. (Equation 7).

Objective and chance-constraint deterministic equivalents.

Let us consider physical node capacity constraints (see Equa-

tion 16). The risk of a physical node outage is a random

discrete variable, hence the probability of a physical node

capacity feasibility is:

P
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where P̄i = 1−Pi is the outage risk of a physical node i. Thus,

our physical node capacity chance-constraint is the following:

P
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(9)

We assume that SFC demands follow a

normal distribution Daτ
s ∼ N (µaτ

s , σaτ
s

2). Hence,
∑

a∈A

∑

s∈Na
V

N (µaτ
s , σaτ

s
2) = N (

∑

a∈A

∑

s∈Na
V

µaτ
s ,

∑

a∈A
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s∈Na
V

(σaτ
s

2 +
∑

a1 6=a∈A

∑

s1 6=s∈Na
V

ρaa1τ
ss1 σaτ

s σa1τ
s1 )). Moreover, we assume

the worst-case scenario that all SFC demands are

strongly correlated (i.e., ρaa1τ
ss1 = 1).1 Thus, given

any two SFCs a and a1, their total deviation is

σ =
√

σ2
a + σ2

a1
+ 2σaσa1 =

√

(σa + σa1)
2 = σa + σa1 .

As a results, we can substitute our objective and chance-

constraints in Equations 3 and 5 with the following linear

deterministic equivalents:

F =
∑

a∈A

∑

b∈Ba
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(10)

1Note that such assumption is also valid when SFC demands are not
correlated or their correlation coefficients are unknown. In these cases, linear
deterministic equivalents of chance-constraints always satisfy availability
requirements R and can result in even higher (actual) availability at expense
of worse resource utilization.
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(
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st+K R

Pij
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st

)

fst
ij (a, b)≤

{

Cij , R<Pij
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,

∀ij ∈ ES

(12)

where K R
Pij

is a constant in a standard Normal distribution

table, R ∈ (0, 1) is the service chain reliability that reflects an

acceptable risk, and Pi (or Pij) is a probability that physical

node i (or link ij) is available, i.e., Cτ
i = Cτ

i (or Cij = Cτ
ij).

Note that if SFC demands do not follow normal distribution,

deterministic equivalents of Problem 1 objective and chance-

constraints can be different.

SFC reliability and chance-constraints discussion. It is

known that chance-constrained programming is less effective

than multi-stage recourse programming to model uncertain-

ties [21]. This is because to provide the same reliability level

chance-constrained SFC composition under-provision more

physical resources than its recourse programming alternative.

On the other hand, solving a recourse program for the SFC

composition is intractable even with moderately small network

sizes. This is due to the fact that solving it requires com-

putations over an exponential number of scenarios, i.e., the

problem is equivalent to an integer program of exponential

size [17]. To avoid considering an exponential number of

scenarios, we use a policy-based reliability for the SFC compo-

sition instead. Specifically, we allow for policy specifications

of chance-constraints acceptable risks and service backups.

For instance, by decreasing an acceptable risk and/or in-

creasing number of backups, we can leverage the overall

probability of a SFC disruption that requires its re-composition

(e.g., migration of virtual resources) during its maintenance.

For example, given a risk of 5%, i.e., R = 0.95, and 5

services for a single SFC, the lower bound probability that

its demands will be satisfied is Plb = R5 = 0.955 ≈ 0.77
not considering inter-service communication demands and not

allowing backup resources. Thus, approximately in 1 out of 5

cases the service chain needs to be re-composed. Alternatively,

if we at least duplicate the service chain physical resources

(i.e., compose 2 service chain backups), the lower bound

probability that SFC demands will be satisfied by at least one

of the duplicates becomes Plb = 1 − (1 − R5)2 ≈ 0.95. As

a result, the service chain needs to be re-composed only in 1

out of 20 cases. However, the tighter reliability policies (i.e.,

the lower acceptable risk or the higher number of backups),

the less feasible solutions are available as well as the worse

objective value of the optimal solution, and thus, the worse

performance of the online service chain composition. We show

such reliability/performance trade-offs of our approach using

trace-driven simulations in Section V.

MCCF-based SFC composition intractabilities. When deter-

ministic equivalents of the objective in Equation 1 as well as of

capacity chance-constraints are known, we can use any integer

programming solver (e.g., CPLEX [22]) for Problem 1 to

reliably compose all (known at a time) service chain requests.

However, due to NP-hardness of this composition, the solution
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Fig. 3: Illustrative example of the augmented with metalinks physical
network which represent feasible service a, b and c placements; numbers
indicate fitness function values - red and black values annotate service
placement and service chaining via some physical link, respectively.

can be intractable for large-scale cloud/edge infrastructures.

To improve its scalability limitations, existing column genera-

tion [16], heuristic [17] and metaheuristic [17] approaches can

be used (often at expense of the master problem optimality).

In the next section, we propose a near optimal metapath

composite variable approach that simplifies a combinatorial

complexity of the SFC composition outlined in Problem 1.

IV. SERVICE CHAIN COMPOSITION VIA METAPATHS

In this section, we aim to simplify the combinatorial com-

plexity of the integer MCCF-based SFC composition problem.

Similarly to existing composite variable schemes [14], our

goal is to create a binary variable that composes multiple

(preferably close to optimal) decisions. To this end, we build

upon a known result in optimization theory: all network flow

problems can be decomposed into paths and cycles [23]. We

first introduce our notion of metapath and its relevance to the

constrained shortest path problem [24], [25], [26]. We then

use the constrained shortest metapaths to create variables with

composite decisions for the SFC composition problem and

discuss scalability improvements of this approach.

Metalinks and metapaths. Before defining the metapath, it

is useful to introduce the idea of ‘metalinks’. Metalinks have

been widely adopted in prior NFV/VNE literature to solve

optimally graph matching problems [13], [16]. A metalink

is an augmentation link in a network graph. In our case, it

represents the (potential) feasible placement of some service

a on some physical node A, as shown in Figure 3. Formally,

we have:

Definition 1 (metalink). A link si for SFC a ∈ A belongs to

the set of metalinks Ea
M if and only if the service s ∈ Na

V of

SFC a can be placed onto the node i ∈ NS .

Building on the definition of a metalink, we can define a

metapath as the path that connects any two services through

the physical network augmented with metalinks. For example,

consider following metapaths a−A−Y −b and a−A−B−b
shown in Figure 3. Formally, we have:

Definition 2 (metapath). The path P st
ij is a metapath between

services s and t for SFC a ∈ A if and only if ∀kl ∈ P st
ij :

kl ∈ ES ∨ kl ∈ {si, tj}.

Intuitively, metapath P st
ij is formed by exactly two metalinks

that connect s and t to the physical network and an arbitrary

number of physical links kl ∈ ES .

Constrained shortest metapaths. Having defined metapaths,

let us consider a simple case of the SFC composition prob-

lem - composition of a single-link chain (i.e., two services

connected via a single virtual link): the optimal composition

of a single-link chain can be seen as the constrained shortest

(meta)path problem that connects two services via the aug-

mented physical network, where all physical links have arbi-

trary fitness values of a service chaining (virtual link mapping)

and all metalinks have arbitrary fitness values of a service

placement divided by the number of neighboring services (i.e.,
by 1 for a single-link chain). In our example, shown in Figure

3, the optimal single-link SFC a − b composition can be

represented by the constrained shortest metapath a−A−Y −b
that satisfies all SFC composition constraints with the overall

fitness function of 3. Further, we prove our intuition formally:

Theorem IV.1. (The optimal single-link SFC composition)

The optimal single-link chain composition is the constrained

shortest metapath.

Proof. Assume the contrary. Let L1(s, t) be the optimal ob-

jective value of the single-link service chain st composition

and L2(s, t) be a length of the constrained shortest metapath

P2. We need to show that L1 6= L2:

Case 1 (L1 < L2): In this case, L1(s, t) solution is mapping

of services s and t to physical nodes i and j, respectively,

and a service link st to a physical path P (i, j) as defined

in the service chain composition problem. Without loss of

generality, we can assume that the optimal solution of the

service chain composition problem is feasible. Hence, s and t
mappings are si and tj metalinks by Definition 1, respectively.

Furthermore, let us define the path P1 = P (si, P (i, j), jt)
which by Definition 2 is a metapath. As the optimal solution

is feasible, P1 satisfies all constraints of the single-link chain

st composition. Hence, P1 is a constrained metapath whose

length L1(s, t) is shorter than L2(s, t) contradicting that P2

is the constrained shortest metapath.

Case 2 (L1 > L2): In this case, we can present metapath

P2 as P2 = P (si, P (i, j), jt), where si and tj are metalinks,

and P (i, j) is a physical path (see Definition 1). Let us map

services s and t on physical nodes i and j, respectively,

and service link st on a physical path P (i, j). As P2 is

the constrained metapath, this mapping is feasible with the

objective value L2(s, t) less than L1(s, t) contradicting that

L1(s, t) is the optimal objective value of the single-link service

chain st composition.

Corollary IV.1. (The optimal single-link SFC composition

complexity) The optimal single-link SFC composition has a

pseudo-polynomial complexity.

Proof. Based on Theorem IV.1, the optimal single-link SFC

is the constrained shortest metapath which is by Definition 2

the constrained shortest path in the augmented network graph.

However, it is known that the constrained-shortest path can be

found in pseudo-polynomial time [26].

We conclude that constrained shortest metapaths are good

candidates to perform composite decisions, i.e., to optimally

decide on a single-link SFC composition in terms of its

services placement and chaining with a single binary variable.

Multiple-link chain composition via metapath. While ob-

serving Figure 3, we can notice how using only a single

constrained shortest metapath per a single-link segment of

a multiple-link SFC a − b − c can lead to an unfeasible

composition: as the optimal a−b composition is a−A−Y −b
metapath, and the optimal b− c composition is b−B−X− c
metapath - service b has to be simultaneously placed on Y
and B physical nodes. Thus, we cannot stitch these metapath,



and we need to find more than one constrained shortest

metapath per a single-link chain. In our composite variable

approach, we find k-constrained shortest metapaths (to create

k binary variables) per each single-link segment of a multi-

link service chain. To find metapaths any constrained shortest

path algorithm can be used [24], [25], [26]. In this paper, we

build upon the path finder proposed in our prior work that is

an order of magnitude faster than recent solutions [24].

To further benefit from constrained shortest metapaths

and simplify the chain composition problem, we offload its

constraints (either fully or partially) to either metalinks or

the path finder. Specifically, geo-location and an arbitrary

number of end-to-end network (e.g., latency) QoS constraints

can be fully offloaded to metalinks and to the path finder,

respectively. At the same time, capacity constraints of the

SFC composition problem are global and can be only partially

offloaded. Once k-constrained shortest paths have been found

for each single-link service chain segment, we can solve GAP

problem [15] to assign each single-link chain segment to

exactly one constrained shortest metapath and stitch these

metapaths as described below.

Allowable fitness functions for metapath-based variables.

In general, fitness functions qualify for our metapath compos-

ite variable approach if they are comprised from either additive

or multiplicative terms. The above requirement fits for most

SFC objectives [1], and other objectives can also qualify if

well-behaved (e.g., if their single-link chain fitness values can

be minimized by a path finder). As the load balancing fitness

function F
E

in Equation 1 qualifies, we compute its single-

link chain value E

[

F sta
ijk

]

for k metapath as following:

E
[

F sta
ijk

]

=
∑

τ∈T

E

[

Daτ
s

Cτ
i

]

/deg(s)+

+
∑

st∈Ea
V

∑

{uv∈ES :

uv∈P sta
ijk }

E

[

Da
st

Cuv

]

+
∑

τ∈T

E

[

Daτ
t

Cτ
j

]

/deg(t),
(13)

where deg(s) corresponds to the service s degree, i.e.,
deg(s) = 1 for s ∈ {in, out} services that handle input and

processed output data of SFCs, respectively; and deg(s) = 2
otherwise. Note that in NFV in and out are dummy services

that corresponds to the flow source and sink physical nodes

and have no computation demands. The first and the last terms

represent the fitness values of metalinks, and the middle term

corresponds to the sum of physical links’ fitness values.

Problem 2 (SFC composition via metapaths). Given a set

of SFCs a ∈ A represented as graphs Ga = (Na
V , E

a
V ),

a physical network graph G = (NS , ES), and having set

of k-constrained shortest metapaths P sta
ijk ∈ Pst

a and their

corresponding fitness function values F sta
ijk found for each

virtual link st ∈ Ea
V in the SFC a, let a binary variable

fst
ijk(b, a) = 1 if the single-link chain segment st is assigned

to the metapath P sta
ijk of the backup b ∈ Ba of SFC a ∈ A,

or 0 otherwise. The SFC composition problem via metapaths

can be formulated as follows:

min
∑

a∈A

∑

b∈Ba

∑

st∈Ea
V

∑

P sta
ijk
∈Pst

a

E
[

F sta
ijk

]

fst
ijk(b, a) (14)

subject to

Metapath Stitching (Assignment) Constraints:

∑

P sta
ijk
∈Pst

a

fst
ijk(b, a)−

∑

P tsa
jik
∈Pts

a

f ts
jik(b, a) =











−1, t = in

1, t = out

0, otherwise

∀t ∈ {in, out} ∨ tj ∈ Ea
M , b ∈ Ba, a ∈ A

(15)

Node Capacity Chance-Constraints:
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Link Capacity Chance-Constraints:
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≥R,

∀uv ∈ ES

(17)

where symbols and notations of sets, parameters, variables

and functions are summarized in Table I.

We remark that in and out are services that handles input

and processed output data of SFCs, respectively. Note also

that deterministic equivalents for the objective coefficients and

capacity constraints in Equations 14, 16 and 17 are similar to

deterministic equivalents of Problem 1.

A. SFC Composition via Lagrangian Relaxation

Aside from solving the NP-hard (GAP) Problem 2, we also

propose its better scalable alternative. In particular, we solve

the GAP using its polynomial Lagrangian relaxation by com-

promising both its optimality and feasibility guarantees [15].
Our approach: Problem 2 has two types of constraints -

stitching (assignment) and capacity constraints. The assign-

ment constraints (Equation 15) represent flow conservation

constraints for metalinks tj ∈ Ea
M . Hence, these constraints

form the totally unimodular constraint matrix. When having

the linear objective function (Equation 14), this property

allows us to relax integrality constraints on fst
ijk(b, a) variable

in the incapacitated service chain composition case (when

capacity constraints are omitted). As a result, we can solve

the above problem using (polynomial) Linear Programming.
Lower Bound Algorithm. Similarly to [27], we use the

unimodularity property benefits and push capacity constraints

(see Equations 11 and 12) to the objective. To this end, let us

denote gτj1 = R − P
τ
j and guv2 = R − Puv functions for each

constraint in Equations 16 and 17, respectively. Let us define

uτj
1 and uuv

2 as the Lagrangian multipliers specified for each

iteration of the subgradient method [27]; we now can define

(deterministic) Lagrangian weights as following:

wsta
ijk = F sta

ijk + uτj
1

(

(µaτ
s +K R

Pi

σaτ
s )/deg(s)+

+(µaτ
t +K R

Pj

σaτ
t )/deg(t)

)

+
∑

uv∈P sta
ijk

uuv
2

(

µa
st+K R

Puv

σa
st

) (18)



We then can solve the following linear program L with any

LP solver:

L = min
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st
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−
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{
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Cuv,R ≤ Puv
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(19)

subject to constraints in Equation 15. Note that to improve

LB while solving L, we can also fix all variables fsta
ijk = 0

whose node (or link) mappings do not satisfy reliability, i.e.,
if R > Pi or R > Pj (or if ∃uv ∈ P sta

ijk : R > Puv).

If solution of L satisfies GAP capacity constraints, we can

stop and report optimal (or suboptimal) solution to GAP.

However, if L solution is unfeasible to the primal GAP

problem, we can project it back to the feasible space using

some polynomial heuristic algorithm to get an upper bound

(UB) of the primal GAP problem.

Upper Bound Algorithm. In this paper, we propose a new

(polynomial) greedy regret lower bound replication (GRLBR)

algorithm that we found fast enough for our large scale

GAP problem with flow assignment constraints. We build

our GRLBR algorithm upon both lower bound replication

and greedy regret algorithms proposed earlier in [27], and its

pseudo code is outlined in Algorithm 1.

GRLBR starts by detecting the largest regret service chain

segment st of SFC a′ (lines 5-12), i.e., the segment with the

largest difference between the first best and the second best

corresponding lagrangian weights wsta
ijk for its potential feasi-

ble assignments. If there are no feasible metapaths assignments

for st of a that satisfy both assignment and capacity constraints

(see Equations 15, 16 and 17), we stop and report no feasible

solution (lines 6-8). Once, st of a′ is found, we add it to the

priority queue Qa′ based on its langrangian weight wsta′

ijk′ (line

13). We then retrieve and remove the head of this queue and try

to map it to the LB metapath solution first (lines 19-20), or to

the lowest lagrangian weight metapath P ŝta′ijk′ (lines 22-23),

or report no feasible solution and terminate, otherwise (lines

17-18). Finally, we allocate corresponding metapath solution

resources for the service chain st segment of a′ and add all its

adjacent segments (lines 25-26). Once Qa′ is empty, all service

chain segments of SFC a′ for its backup b′ have been placed.

We then mark b′ backup of SFC a′ as mapped and remove it

from further consideration by GRLBR (lines 28-31). Note that

at any time Qa′ contains only two elements due to a linear

service chain topology.

Subgradient method. Having LB and UB algorithms out-

lined, we use them within the general subgradient method to

iteratively improve LB and UB as in [27]. To this end we

start with zero u1 and u2 lagrangian multiplier vectors. At

each iteration we track if LB solution is feasible, and if so

we terminate our subgradient algorithm. Moreover, if LB has

been improved, i.e., if LBnew > LB, and LB is not feasible,

we project LB solution back to the feasible space with our

GRLBR algorithm to obtain new UBnew solution and update

existing UB solution if UBnew < UB. If
||UB−LB||
||LB|| < ε or

number of iterations is exceeded, we terminate the subgradient

Algorithm 1: GRLBR

Input: f̂st
ijk(a, b):= solution of L2; wsta

ijk := lagrangian weights; P sta
ijk ∈ P

st
a

:= set of k-constrained shortest metapaths and their corresponding fitness
values F sta

ijk found for each virtual link st ∈ Ea
V

Output: UB := upper bound to GAP problem; fst
ijk(a, b):= feasible solution to

GAP problem
1 begin

/* Step 0: initialize */

2 A′ ← A
3 B′a ← Ba, ∀a ∈ A
4 while A′ /∈ ∅ do

/* Step 1: find highest regret virtual link sta′
*/

5 forall st ∈ Ea and a ∈ A′ do

6 if @P sta
ijk : P sta

ijk is feasible then

7 terminate and report no feasible solution
8 end

9 ijk′

sta ← argmin{wsta
ijk : P sta

ijk is feasible}

10 ρsta ← min{wsta
ijk − wsta

ijk′(sta)
: P sta

ijk is feasible, ijk 6=

ijk′

sta}
11 end

12 sta′ ← argmax
st∈Ea,a∈A′

{ρsta}

/* Step 2: allocate all service chain segments that

contains sta′
*/

13 Put sta′ to the priority queue Qa′ ← {sta′, wsta′

ijk′ }

14 b′ ← min{B′a′

}
15 while Qa′ /∈ ∅ do

16 ŝt← retrieve and remove Qa′ ’s head

17 if @P ŝta′

ijk : P ŝta′

ijk is feasible then

18 terminate and report no feasible solution

19 else if P ŝta′

ijk : f̂ ŝt
ijk(a

′, b′) == 1 is feasible then

20 UB ← UB + F ŝta′

ijk

21 else

22 P ŝta′

ijk′ ← argmin{wŝta′

ijk : P ŝta′

ijk is feasible}

23 UB ← UB + F ŝta′

ijk′

24 end

25 allocate corresponding physical resources for ŝt
26 add adjacent virtual links of ŝt and their best lagrangian weights

to Qa′

27 end

/* Step 3: mark b′ backup of a′
SFC as allocated and

go to Step 1 */

28 B′a′

← Ba′

− b′

29 if B′a′

∈ ∅ then

30 A′ ← A′ − a′

31 end
32 end
33 end

algorithm. At the end of each iteration u1 and u2 are calculated

w.r.t. to their objective gradient. More implementation details

as well as best practices on the subgradient method can be

found in [27].

V. PERFORMANCE EVALUATION

In this section, we evaluate performance of our reliable

SFC composition approach under challenging disaster incident

conditions that can cause severe infrastructure outages [7].

Thus, we evaluate its performance against the state-of-the-art

NFV/VNE solutions of the (master) integer MCCF problem.

General Settings. For our simulations, we use an HPC Cloud

server with two Intel Xeon E5-2683 v3 14-core CPUs at 2.00

GHz (total 56 virtual cores), 256GB RAM, and running the

Ubuntu 16.04 allocated in NSF CloudLab platform [30]. We

solve math programs with IBM ILOG CPLEX [22]. We use

both Internet Topology Zoo [28] and Atlas [29] databases to

re-create the US Tier1 and regional providers’ networks as

shown in Figure 4. We assume that each topology has nodes

and links with uniformly distributed computation capacity
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Fig. 6: Service chain (SC) composition ratio (a,c) and disruption ratio (b,c)
results under different natural disaster-incidents with reliability R = 0.8 (first
row), and MpSC results under hurricane disaster-incidents (second row).

it is recommended to avoid use of metapath-based composite

variables and merely consider the Opt policy instead. For the

rest of our evaluation, we only use the MpSC service chain

composition algorithm.

MpSC can secure up to 2 times more SFCs than

PathGen and IsoSC under challenging disaster-incident

conditions. Furthermore, we can see how our MpSC outper-

forms PgSC and IsoSC by securing up to 2 times more SFCs

under challenging disaster-incident conditions of tornadoes

and hurricanes as shown in Figures 6a and 6b with the

service chain reliability R = 0.8. This is due to the fact

that MpSC reaches the optimality most of the time while

being sufficiently scalable. At the same time, PgSC is limited

by the performance of the SFC composition algorithm (that

commonly uses a two-stage composition) to get the initial

feasible solution [16]. Moreover, it is also known that column

generation approaches such as PgSC converge slowly to

the optimal for integer problems [15]. In contrast to PgSC,

IsoSC doesn’t need an initial feasible solution, but can fail

to find one or not converge to the optimal solution for the

predefined amount of iterations [17].

Policy-based SFC reliability trade-offs. Further, to achieve

a desired level of reliability during SFC composition (i.e.,
proactively), the capacity chance-constraints acceptable risk

(i.e., 1 − R) and/or the number of backups policies can be

adjusted appropriately. As shown for MpSC in Figures 6c

and 6d, increasing either chance-constraints reliability R or the

number of backups decreases the number of composed SFCs

by either prohibiting more physical resources for allocation

or utilizing more physical resources for SFC backups. On

the other hand, such a strategy can significantly minimize the

number of disrupted SFCs, therefore minimizing their outages.

VI. CONCLUSION

In this paper, we presented the reliable SFC composition

approach for geo-distributed latency-sensitive SFCs. To the

best of our knowledge, we present the first practical and near

optimal approach for the general NP-hard SFC composition

case [13]. To ensure reliability of SFCs, we handle both their

demand fluctuations and possible infrastructure outages during

the composition via use of capacity chance-constraints and

service backups policies. We have addressed NP-hardness lim-

itations of the (master) integer MCCF-based SFC composition

problem by proposing a novel metapath composite variable

approach that uses either (NP-hard) GAP or its (polynomial)

Lagrangian relaxation counterpart. Using realistic trace-driven

simulations with US Tier-1 and regional infrastructure topolo-

gies, we have shown that our metapath composite variable

approach reaches 99% optimality on average, is up to 3 orders

of magnitude faster than the master problem solution for

practically sized problems and can compose twice as many

SFCs than related NFV/VNE methods.
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